Low-Energy Ion Beams:

Simulations of Their Transport Through the Inner <u>Magnetosphere</u>

Motivation

"Lobal winds" in the TIDE data

Lobal winds are ...

... ubiquitous

Seen by Polar-TIDE throughout nightside apogee passes See by LANL/MPA as an "ion line" when S/C charging is large and negative (0-6 LT)

... low-energy ion beams

Highly field-aligned

~100 eV of drift energy

< 10 eV of thermal energy

Densities are small, < 1 cm⁻³

... probably O+

Test particle modeling shows thats the only possible species Eminating from the nightside auroral zone (?)

... directed Earthward during substorm dipolarizations

One case showed no acceleration, heating, or isotropization Split energy peaks during this event could be H^+/O^+ filtration (?)

... probably captured into the plasma sheet

Test particle modeling shows PS entry for $X < -20~R_{\rm E}$ Also shows > 10x energy increase and isotropization upon entry Also show that near-earth PS crossings are not usually "captured"

Question

How would these low-energy ion beams (LEIBs) move through the inner magnetosphere?

Answer

Run some numerical experiments with different LEIBs and different convection patterns

Boundary Conditions

Density of 1 cm $^{\!\!\!-3}$ with $T_{\parallel}\!\!=\!\!100$ eV and $T_{\perp}\!\!=\!\!10$ eV

Convection Patterns

"Low Activity" Simulation: Kp=2, $\Delta\Phi_{PC}$ =40 kV "High Activity" Simulation: Kp=9, $\Delta\Phi_{PC}$ =200 kV

"High + RC EField" Simulation: Kp=9, $\Delta\Phi_{PC}$ =200 kV, plus $\Delta\Phi_{RC}$ =55 kV

Contours every 5 kV, dotted is > 0 and solid is < 0

Global Dial-Plot Results

Pitch-Angle Averaged Fluxes

Total Content Quantities

Activity Level	Ntot (24 h) [ions]	Etot (24 h) [keV]	Dst (24 h) [nT]	Etot/Ntot [keV/ion]	t(90% Etot) [hours]
Low	9.75×10^{28}	$1.10 \text{x} 10^{28}$	-0.0439	0.113	12
High	5.77×10^{29}	1.95×10^{29}	-0.775	0.338	5
High+RC	9.39×10^{29}	$5.03x10^{29}$	-2.00	0.535	13

Ratios:

Etot (high+RC) / Etot (low)	45.5
Etot (high+RC) / Etot (high)	2.58
Etot (high) / Etot (low)	17.6

Another Test:

LEIB After Plasma-Sheet Capture and Acceleration

Boundary Conditions

Density of 1 cm⁻³ with T_{\parallel} =1 keV and T_{\perp} =1 keV

Global Dial-Plot Results

Pitch-Angle Averaged Fluxes

Total Content Quantities

Activity	Ntot (24 h)	Etot (24 h)	Dst (24 h)	Etot/Ntot	t(90% Etot)
Level	[ions]	[keV]	[nT]	[keV/ion]	[hours]
	0.06.1028	2.70. 1029	1 11	2.14	10
Low	8.86×10^{28}	2.78×10^{29}	-1.11	3.14	19
High	4.98×10^{29}	7.91×10^{30}	-31.5	15.9	8
High+RC	5.74×10^{29}	6.88×10^{30}	-27.4	12.0	11

Ratios:

Etot (high+RC) / Etot (low)	24.7
Etot (high+RC) / Etot (high)	0.869
Etot (high) / Etot (low)	28.5